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Notes for the course REAL ANALYSIS

3 Measures

The basic idea behind integration theory via measures may be roughly de-
scribed as follows: Given a space (set) we want to associate "sizes" to
"pieces" of the space. To do this we first have to make precise what we
mean by a "piece", i.e., what subsets we admit as "pieces". This is the
purpose of the concept of a g-algebra and a measurable space. Given that
we know what a piece is, we want to assign a number to it, its "size", in
such a way that sizes add up appropriately when we join pieces. This is pro-
vided by the concept of a measure. Then, we can declare the integral for the
characterisitc function on a piece to be the size of the piece. Approximating
more arbitrary functions by linear combinations of characteristic functions
for pieces then yields a general notion of integral.

3.1 o-Algebras and Measurable Spaces

Definition 3.1 (Boolean Algebra). Let A be a set equipped with three
operations: A: AxA— A V:AxA— Aand -: A— A and two special
elements 0,1 € A. Suppose these satisfy the following properties:

o (zANy)ANz=xA(yANz)and (xVy)Vz=aV(yVz) VryzecA
(associativity)

e xANy=yAzandzVy=yVz Vr,y€e A (commutativity)

A (yVz) = (zAy)V(xAz) and 2V (yAz) = (xVy)A(zVz) Va,y,z € A.
(distributivity)

e zA(zVy)=zandzV(xAy)=x Vz,y€ A. (absorption)
e x A-xz=0andzV-z=1 Vze A (complement)
Then, A is called a Boolean algebra.

Proposition 3.2. Let A be a Boolean algebra. Then, the following properties
hold:

sANz=xz,zVer=z,zAN0=0, zAN1l=z, 2V0=2,2VvV1=1 VxeA
Proof. Exercise. O

Exercise 3. Show that the set with two elements 0,1 forms a Boolean
algebra. This is important in logic, where 0 stands for "false" and 1 for
"true".
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Exercise 4. Let S be a set. Show that the set P(.S) of subsets of S forms
a Boolean algebra, where V = U is the union, A = N is the intersection and
- is the complement of sets.

Definition 3.3 (Algebra of sets). Let S be a set. A subset M of the set
PB(S) of subsets of S is called an algebra of sets iff it is a Boolean subalgebra

of P(9).

Proposition 3.4. Let S be a set and M a subset of the set PB(S) of subsets
of S. Then M 1is an algebra of sets iff it contains the empty set and is closed
under complements, finite unions, and finite intersections.

Proof. Immediate. O

Exercise 5. Show that the above proposition remains true if we erase either
the requirement for closedness under finite unions or the requirement for
closedness under finite intersections.

Definition 3.5. Let S be a set and M an algebra of subsets of S. We call
M a g-algebra of sets iff it is closed under countable unions and countable
intersections.

Exercise 6. Show that the above definition remains unchanged if we remove
either the requirement for closedness under countable unions or closedness
under countable intersections.

Definition 3.6. Let S be a set and B a subset of the set B(S) of subsets of
S. Then, the smallest o-algebra M on S containing B is called the o-algebra
generated by B.

Exercise 7. Justify the above definition by showing that the smallest o-
algebra in the sense of the definition always exists.

Definition 3.7. Let S be a set and B a subset of B(S). Then, B is called
monotone iff it satisfies the following properties:

e Let {4, }nen be a sequence of elements of B such that 4, C A, ;1.
Then, U,y An € B.

e Let {4, }nen be a sequence of elements of B such that 4, O A,41.

Then, (), An € B.

Proposition 3.8. 1. A o-algebra is monotone. 2. An algebra that is mono-
tone is a o-algebra.

Proof. Exercise. O

Proposition 3.9 (Monotone Class Theorem). Let S be a set and N an al-
gebra of subsets of S. Then, the smallest set M of subsets of S which contains
N and is monotone is the o-algebra generated by N .
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Proof. For each A € M and consider
My ={BeM:ANBeM,AN-Bec M,-ANB e M}.

It is easy to see that M4 is monotone. |Exercise.Show this!| Furthermore,
if Ae N, then N C My since NV is an algebra. So in this case M C M4
my minimality of M and consequently M = M 4. Thus, for B € M we have
B € My and hence A € Mpif A€ N. So, N C Mp and by minimality we
conclude M = Mp for any B € M. But this means that M is an algebra.
Thus, by Proposition 13.8.2, is a o-algebra. Furthermore, by minimality
and Proposition EEBQBI,_S??% the o-algebra generated by N. [l

Definition 3.10. Let S be a set and M a g-algebra of subsets of S. Then,
we call the pair (S, M) a measurable space and the elements of M measurable
sets.

Definition 3.11. Let S be a measurable space and U a subset of S. Then,
the o-algebra on S intersected with U is called the induced o-algebra on U.

Definition 3.12. Let S be a topological space. Then, the o-algebra gener-
ated by the topology of S is called the algebra of Borel sets. Its elements
are called Borel measurable.

3.2 Measurable Functions

As we see the concept of a measurable space is very similar to the concept of
a topological space. Both are based on a set of subsets closed under certain
operations. We can push this analogy further and consider the analog of a
continuous function: a measurable function.

Definition 3.13. Let S,T be measurable spaces. Then a map f : S —
T is called measurable iff the preimage of every measurable set of T' is a
measurable set of S. If either T or S or T and S are topological spaces
instead we call f measurable iff it is measurable with respect to the generated
o-algebra(s) of Borel sets.

Proposition 3.14. Let S,T,U be measurable spaces, f : S — T and g :
T — U measurable. Then, go f : S — U is measurable.

Proof. Immediate. 0

Proposition 3.15. Let S be a measurable space, T a topological space and
f S — T. Then, f is measurable iff the preimage of every open set is
measurable. Also, f is measurable iff the preimage of every closed set is
measurable.

Proof. Exercise. 0
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Corollary 3.16. Let S and T be topological spaces and f : S — T a contin-

uwous map. Then, f is measurable.

Proposition 3.17. Let S be a measurable space, T' and U topological spaces,
f: 8 —=>TxU. Denote by fr : S — T and fy : S — U the component
functions. If the product f: S — T x U 1is measurable, then both fr and fi
are measurable. Conversely, if T and U are second-countable and fr and fy
are measurable, then f is measurable.

Proof. First suppose that f is measurable. Then, fr = pr o f, where pr
is the projection T' x U — T'. Since pr is continuous, it is measurable b
cor:contmes Trop:compmes

Corollary Efme composition fr is measurable by Proposition E_FPL
In the same way it follows that fy is measurable.

Conversely, suppose now that fr and fi; are measurable. If V- C T and
W C U are open sets, then f7'(V) and f;;'(W) are measurable in S and
so is their intersection f~(V x W) = f (V) N f;*(W). Since T and U
are second-countable, every open set in T' x U can be written as a countable
union of products of open sets in 7' and U [Exercise.Show this!|. But the
preimage of such a countable union in S under f~! can be written as a
countable union of preimages. Since these are measurable, t ]e_;gr :(;n()elég]?%é)le
union is also measurable. It follows then from Proposition glg that f is
measurable. O

In the following K denotes either the field of real numbers R or the field
of complex numbers C.

Proposition 3.18. Let S be a measurable space, f,g : S — K measurable
and A € K. Then:

o |f|:xz— |f(x)| is measurable.
o f+g:x— f(x)+g(x) is measurable.
o \f:x+> \f(x) is measurable.
o fg:x— f(x)g(x) is measurable.
Proof. Exercise. O

This shows in particular that measurable functions with values in R or C
form an algebra. Another important property of the set of measurable maps
is its closedness under pointwise limits. This can be formulated for the more
general case when the values are taken in a metric space.

Theorem 3.19 (adapted from S. Lang). Let S be a measurable space and

T a metric space. Suppose {fn}nen is a sequence of measurable functions
fn S — T which converges pointwise to the function f: S — T. Then, f
18 measurable.
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Proof. Let U be an open set in 7. Suppose x € f~Y(U). Since {f(2)}nen
converges to f(z) there exists m € N such that z € f,,}(U) for all n > m. In
particular, z € |J°2, f,1(U) for any k € Nand so also z € (oo, o, £ (U).
Since this is true for any x € f~1(U) we get

e U s,

k=1n=k

Consider now for all [ € N the open sets
Uy={zelU:dz,y) >1/IVy ¢ U}.

Then, U = |J;2, U, and applying the above reasoning to each U; we get,

[e.ole oluNe o}

Moyednuy it
I=1k=1n=k
Suppose now that = ¢ f~!(U) and fix I € N. Since By, (f(z) NU; = 0
there exists m € N such that = ¢ f,1(U;) for all n > m. In partic-
ular, z ¢ Moy UnSy fo1(U1).  Since this is true for any | € N we get
z ¢ U NMie, Use, £ (U)). Since this is true for any ¢ f~1(U) we
get, combining with the above result,

oo 0 0

ro=UJNU .

l=1k=1n=k

Since f,, is measurable for all n € N the right hand side is measurable. We
have tr}éusm%léowgcl that preimages of open sets are measurable. By Proposi-

Cril
tion E% P5 this 15 sufficient for f to be measurable. O

Definition 3.20. Let S be a measurable space. A map f :.S — K is called
a simple map iff it is measurable and takes only finitely many values.

Proposition 3.21. Let S be a measurable space and f: S — K a map that
takes only finitely many values. Then f is a simple map (i.e., is measurable)
iff the preimage of each of the values of f is measurable.

Proof. Exercise. O

Proposition 3.22. The simple funtions with values in K form a subalgebra
of the algebra of measurable functions with values in K.

Proof. Exercise. O

Theorem 3.23 (adapted from S. Lang). Let S be a measurable space and
f S — K measurable. Then, f is the pointwise limit of a sequence of simple
maps. If, moreover, f takes values in Rar, then the sequence can be chosen
to increase monotonically.
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Proof. Consider first the case K = R. Fixn € N. Foreach k € {1,...,2" n}
define the interval I}, := [-n + %, —n + 2%) Also, define Iy := (—o0, —n)
and Iont1,41 = [n,00). Notice that R is the disjoint union of the measur-
able intervals Iy for k € {0,...,2""n + 1}. Now set X := f~1(I;) for
all k € {0,...,2""n + 1}. Since the intervals I} are measurable so are the
sets Xi. Define the function f, : X — R by f,(Xy) := —n + % for all
ke{l,....,2"" n4+1} and f,(Xo) := —n. Tt is easy to see that {f, }nen is a
sequence of simple functions that converge pointwise to f. |[Exercise.Show
this!] Moreover, if f takes values in Rar only, the sequence is monotonically
increasing. |Exercise.Show this!| To treat the case K = C we decompose f
into its real and imaginary part. The sum of simple sequences for each part
is again a simple sequence. O

3.3 Positive Measures

Definition 3.24. Let {a,}neny be a monotonously increasing sequence of
real numbers. Then we say that lim,, .. a, = oo iff for any a € R there
exists m € N such that a,, > a for all n > m.

Definition 3.25 (Positive Measure). Let S be a set with an algebra M of
subsets. Then, a map p: M — [0,00] is called a (positive) measure iff it is
coutably additive, i.e., satisfies the following properties:

e u(0)=0.

e Let {U,}nen be a sequence of elements of M such that U, NU,, =0
if n # m and such that |J,,cy Un € M. Then,

M(U Un> =Y u(U).

neN neN

If U € M, then u(U) is called its measure. Moreover, a measurable space S
with o-algebra M and positive measure p: M — [0, 00| is called a measure
space.

We shall mostly be interested in the case where M actually is a o-algebra.
However, it is will turn out convenient to keep the definition more general
when we consider constructing measures.

Proposition 3.26. Let S be a set, M an algebra of subsets of S and u :
M — [0,00] a measure. Then, the following properties hold:

o Let AABe M and AC B. Then, u(A) < u(B).
o Let {An}nen be a sequence of elements of M such that | J,,cy An € M.

Then,
7 (U An> <> p(An).

neN neN



Robert Oeckl - RA NOTES — 03/04,/2009 7

o Let {Annen be a sequence of elements of M such that A, C A4 for
all n € N and |J,,cy An € M. Then,

(U = i
neN

o Let {Ap}nen be a sequence of elements of M such that Ay, O Any1 for
all n € N and (N, .y An € M. If furthermore, u(Ay,) < oo for some

n € N then,
() =

neN

neN

Proof. Exercise. O

Exercise 8. Check whether the following examples are measures.

e Let S be a set and consider the o-algebra of all subsets of S. If A C S
is finite define p(A) to be its number of elements. If A C S is infinite
define p(A) = co. p is called the counting measure.

e Let S be a set and consider the g-algebra of all subsets of S. If A C §
is finite define u(A) = 0. If A C S is infinite define u(A) = oco.

e Let S be a set and consider the o-algebra of all subsets of S. If A C §'is
countable define u(A) = 0. If A C S is not countable define p(A) = co.

e Let S be a set and consider the o-algebra of all subsets of S. Let x € S.
For A C S define u(A) = 1if x € A and pu(A) = 0 otherwise. pu is
called the Dirac measure with respect to x.

Definition 3.27. Let S be a measure space and A C S a measurable subset.
We say that A is o-finite if it is equal to some countable union of measurable
sets with finite measure.

Exercise 9. Which of the examples of measures above are o-finite?

Definition 3.28. Let S be a measure space with measure . If every subset
of any set of measure 0 is measurable, then we call S a complete measure.

Exercise 10. Show that the completion of a measure may be accomplished
via enlarging the o-algebra of measurable sets. Show that this is a well
defined concept (i.e., always exists and is uniquely determined). [Hint: Show
that the o-algebra of the completion is given by sets of the form AUN, where
A is measurable and N is a subset of a set of measure 0.]
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3.4 Extension of Measures

We now turn to the question of how to construct measures. We will focus
here on the method of extension. That is, we consider a measure that is
merely defined on an algebra of subsets and extend it to a measure on a
o-algebra.

Definition 3.29. Let S be a set and M a o-algebra of subsets of S. Then,
a map A : M — [0,00] is called an outer measure on M iff it satisfies the
following properties:

e \(0)=0.
o Let A, Be M and AC B. Then, A(4) < A(B). (monotonicity)

o Let {A,}nen be a sequence of elements of M such that | J,, .y An € M.
Then,

A (U An> <> AAy). (countable subadditivity)

neN neN

Lemma 3.30. Let S be a set, N an algebra of subsets of S and p a measure
on N. On the o-algebra B(S) of all subsets of S define the function \ :
P(S) — [0, 00] given by

AX) = inf {ZM(AH) t An € NVneNandX C [ An}.

neN neN

Then, X is an outer measure on P(S). Moreover, it extends u, i.e., N(A) =

w(A) for all A e N.

Proof. Exercise. O

Definition 3.31. Let S be a set and A an outer measure on the o-algebra
PB(S) of all subsets of S. Then, A C S is called A-measurable iff \(X) =
AMXNA)+ XX N-A) forall X CS.

Lemma 3.32. Let S be a set and X an outer measure on the o-algebra JB(S)
of all subsets of S. Let M be the set of subsets of S that are A-measurable.
Then, M is a o-algebra and X\ is a complete measure on M.

Proof. Exercise. O
Theorem 3.33 (Hahn). Let S be a set, N an algebra of subsets of S and p

a measure on N'. Then, p can be extended to a o-algebra M containing N
such that p is a complete measure on M and for all X € M we have

w(X) = inf{z p(An) : Ay € N¥n € Nand X C | An}.

neN neN
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Proof. Exercise. O

Proposition 3.34 (Uniqueness of Extension). Let S be a measurable space
with o-algebra M and measures j1, 2. Suppose there is an algebra N C
M generating M and such that u(A) := ui1(A) = pa(A) for all A € N.
Furthermore, assume that p is o-finite with respect to N'. Then, u1 = o
also on M.

Proof. Let {X,,}nen be a sequence of elements of A such that S = [J,cn Xk
and X,, € Xp,41 and pu(X,) < oo for all n € N. (By o-finiteness, there is
a sequence {Yy}ren with S = ey Y and p(Yy) < oo for all £ € N. Now
set X, := (J;_, Y.) Define the finite measures p1,(A) := pi(ANX,) and
pon(A) = pa(ANX,) on M for all n € N. Now, let B,, be the subsets of
M where 11, and 2, agree. By construction, N' C B, for all n € N. We
show that the B,, are monotone.

Fix n € N. Let {4 }ren be a sequence of elements of B,, such thaEOA, <.
Ap41 for all k € N and set A := J;cyy Ax- Then, using Proposition 5.28,

pin(A) = lim py,(Ag) = Hm pop(Ag) = pon(A).
k—o0 k—o0

So, A € B,,. Now, let {Ax}ren be a sequence of elements of B,, such tl;zgt_
Ay D Apqforall k € Nand set A := [,y Ak. Again using Proposition B. ]
we get (note that the finiteness of the measure is essential here),

p1n(A) = lim pyn(Ax) = m po,(Ag) = p2n(A).
k—oo k—oo

rop:mct
So, A € B,. Hence, c¢B,, is monotone and by Proposition BTQPW?nust have
M C B,, and hence M = B,,.

Thus, pt1,n = po,, foralln € N. But then, g1 = Y oy 1.0 = D pen M2 =
2. This completes the proof. O

3.5 The Lebesgue Measure

In the following we are going to construct the Lebesgue measure. This is the
unique (as we shall see) measure on the real numbers assigning to an interval
its length. The construction proceeds in various stages.

Lemma 3.35. The finite unions of intervals of the type [a,b), (—o0,a), and
[a,00) form an algebra N of subsets of the real numbers.

Proof. Exercise. O

Lemma 3.36. The prescription u([a,b)) = b — a determines uniquely a
finitely additive function N'— [0,00] on the algebra N considered above.

Proof. Exercise. 0

mes
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Lemma 3.37. The function u: N — [0,00] defined above is countably ad-
ditive and thus a measure.

Proof. Let {A,}nen be a sequence of pairwise disjoint elements of N such
that A :=J,cy € N. We wish to show that

ZZEE:/‘C4n)

neN

By finite additivity we have p(A) > p(Ur, An) = >ty w(A,) for all

m € N and hence
A) =) (A
neN

It remains to show the opposite inequality.

Assume at first that A is a finite interval [a,b). Then, A is the disjoint
union of a sequence of intervals {I}reny with I = [ag,bx) in such a way
that each A, is the finite union of some I;. (We also allow the degenerate
case ar = by in which case I, = ).) Fix now € > 0 (with € < b — a) and
define I, := (ay — 27 F+2e by + 27 *+2¢) for all k € N. Then, the open
sets {I},}ken cover the compact interval [a,b — €/2]. Thus, there is a finite
set of indices I C N such that [a,b — €/2] C Uy I, Then clearly also
[a,b—€/2) C Upes If, where I} = [ay — 27 F+2)e, by, + 27 *+2)¢). By finite
additivity of u we get

p(la,b—€/2)) < p (U IZ) <> u(ry)

kel kel
_Z< (I) + €2 k+1) <e/24 > ().
kel kel

But since pu(A) = p([a,b—€/2))+€/2, we find p(A) < e+>" 4 cp p(Ix). Thus,

there exists m € N such that p(A4) < e+ > | u(A,). But since € was

arbitrary we can conclude pu(A) < _n#(A,) and hence equality.
Exercise.Complete the proof. O

Proposition 3.38. Consider the real numbers with its o-algebra B of Borel
sets. Then, the prescription p([a,b)) := b — a uniquely extends to a measure
w:B—[0,00].

lem: intahgintfa [lem:intmes
Proof. By Lemmas 3.3b, 8.36 and I3.37 the prescription uniquely defines

a measure p on the algebra N of t]l'llml:ggﬁnOf intervals of the type [a,b),
(—o00,a), and [a,00). By Theorem B.33 i extends to a o-algebra M con-
taining A/. But the o-algebra generated by A is the o-algebra B of Borel
sets. (Exercise.! Show this!) So, in particular, we get a measure on 5. By
Proposition this is unique since p is o-finite on . (Exercise.Show
this latter statement!) O
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Definition 3.39. The measure defined in the preceeding Proposition is
called the Lebesgue measure on R.

Exercise 11. Consider the real numbers with the Lebesgue measure. De-
termine 1(Q) and p(R\ Q).

Exercise 12. The Cantor set C is a subset of the interval [0,1]. It can be
described for example as

oo (3"—1)/2
2% 2% +1
c=N U [3777371 ]
n=0 k=0

Show that p(C') = 0.

Proposition 3.40. The Lebesque measure is translation invariant, i.e., pu( A+
c) = u(A) for any measurable A and ¢ € R.

Proof. Straightforward. O

Exercise 13. Consider the following equivalence relation on R: Let x ~ y
iff z —y € Q. Now choose (using the axiom of choice) one representative out
of each equivalence class, such that this representative lies in [0, 1]. Call the
set obtained in this way A.

1. Show that (A+7)N(A+s) =0 if r and s are distinct rational numbers.
Supposing that A is Lebesgue measurable, conlude that pu(A) = 0.

2. Show that R = quQ(A—l—q). Supposing that A is Lebesgue measurable,
conlude that p(A) > 0.

We obtain a contradiction showing that A is not Lebesgue measurable.

We can define the Lebesgue measure more generally for R”. The intervals
of the type [a,b) are replaced by products of such intervals. Otherwise the
construction proceeds in parallel.

Proposition 3.41. Consider R™ with its o-algebra B of Borel sets. Then,
the prescription pu([a1,b1) X «-+ X [ap,by)) = (b1 — 11) -+ (by, — ay) uniquely
extends to a measure p : B — [0, 00].

Exercise 14. Sketch the proof by explaining the changes with respect to
the one-dimensional case.



