
Robert Oekl � RA NOTES � 03/04/2009 1Notes for the ourse REAL ANALYSIS3 MeasuresThe basi idea behind integration theory via measures may be roughly de-sribed as follows: Given a spae (set) we want to assoiate "sizes" to"piees" of the spae. To do this we �rst have to make preise what wemean by a "piee", i.e., what subsets we admit as "piees". This is thepurpose of the onept of a σ-algebra and a measurable spae. Given thatwe know what a piee is, we want to assign a number to it, its "size", insuh a way that sizes add up appropriately when we join piees. This is pro-vided by the onept of a measure. Then, we an delare the integral for theharaterisit funtion on a piee to be the size of the piee. Approximatingmore arbitrary funtions by linear ombinations of harateristi funtionsfor piees then yields a general notion of integral.3.1 σ-Algebras and Measurable SpaesDe�nition 3.1 (Boolean Algebra). Let A be a set equipped with threeoperations: ∧ : A × A → A, ∨ : A × A → A and ¬ : A → A and two speialelements 0, 1 ∈ A. Suppose these satisfy the following properties:
• (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z) ∀x, y, z ∈ A.(assoiativity)
• x ∧ y = y ∧ x and x ∨ y = y ∨ x ∀x, y ∈ A. (ommutativity)
• x∧(y∨z) = (x∧y)∨(x∧z) and x∨(y∧z) = (x∨y)∧(x∨z) ∀x, y, z ∈ A.(distributivity)
• x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x ∀x, y ∈ A. (absorption)
• x ∧ ¬x = 0 and x ∨ ¬x = 1 ∀x ∈ A. (omplement)Then, A is alled a Boolean algebra.Proposition 3.2. Let A be a Boolean algebra. Then, the following propertieshold:

x ∧ x = x, x ∨ x = x, x ∧ 0 = 0, x ∧ 1 = x, x ∨ 0 = x, x ∨ 1 = 1 ∀x ∈ A.Proof. Exerise.Exerise 3. Show that the set with two elements 0, 1 forms a Booleanalgebra. This is important in logi, where 0 stands for "false" and 1 for"true".



2 Robert Oekl � RA NOTES � 03/04/2009Exerise 4. Let S be a set. Show that the set P(S) of subsets of S formsa Boolean algebra, where ∨ = ∪ is the union, ∧ = ∩ is the intersetion and
¬ is the omplement of sets.De�nition 3.3 (Algebra of sets). Let S be a set. A subset M of the set
P(S) of subsets of S is alled an algebra of sets i� it is a Boolean subalgebraof P(S).Proposition 3.4. Let S be a set and M a subset of the set P(S) of subsetsof S. Then M is an algebra of sets i� it ontains the empty set and is losedunder omplements, �nite unions, and �nite intersetions.Proof. Immediate.Exerise 5. Show that the above proposition remains true if we erase eitherthe requirement for losedness under �nite unions or the requirement forlosedness under �nite intersetions.De�nition 3.5. Let S be a set and M an algebra of subsets of S. We all
M a σ-algebra of sets i� it is losed under ountable unions and ountableintersetions.Exerise 6. Show that the above de�nition remains unhanged if we removeeither the requirement for losedness under ountable unions or losednessunder ountable intersetions.De�nition 3.6. Let S be a set and B a subset of the set P(S) of subsets of
S. Then, the smallest σ-algebra M on S ontaining B is alled the σ-algebragenerated by B.Exerise 7. Justify the above de�nition by showing that the smallest σ-algebra in the sense of the de�nition always exists.De�nition 3.7. Let S be a set and B a subset of P(S). Then, B is alledmonotone i� it satis�es the following properties:

• Let {An}n∈N be a sequene of elements of B suh that An ⊆ An+1.Then, ⋃n∈N An ∈ B.
• Let {An}n∈N be a sequene of elements of B suh that An ⊇ An+1.Then, ⋂n∈N An ∈ B.prop:samon Proposition 3.8. 1. A σ-algebra is monotone. 2. An algebra that is mono-tone is a σ-algebra.Proof. Exerise.prop:mt Proposition 3.9 (Monotone Class Theorem). Let S be a set and N an al-gebra of subsets of S. Then, the smallest setM of subsets of S whih ontains

N and is monotone is the σ-algebra generated by N .



Robert Oekl � RA NOTES � 03/04/2009 3Proof. For eah A ∈ M and onsider
MA := {B ∈ M : A ∩ B ∈ M, A ∩ ¬B ∈ M,¬A ∩ B ∈ M}.It is easy to see that MA is monotone. [Exerise.Show this!℄ Furthermore,if A ∈ N , then N ⊆ MA sine N is an algebra. So in this ase M ⊆ MAmy minimality of M and onsequently M = MA. Thus, for B ∈ M we have

B ∈ MA and hene A ∈ MB if A ∈ N . So, N ⊆ MB and by minimality weonlude M = MB for any B ∈ M. But this means that M is an algebra.Thus, by Proposition prop:samon3.8.2, M is a σ-algebra. Furthermore, by minimalityand Proposition prop:samon3.8.1, it is the σ-algebra generated by N .De�nition 3.10. Let S be a set and M a σ-algebra of subsets of S. Then,we all the pair (S,M) ameasurable spae and the elements ofMmeasurablesets.De�nition 3.11. Let S be a measurable spae and U a subset of S. Then,the σ-algebra on S interseted with U is alled the indued σ-algebra on U .De�nition 3.12. Let S be a topologial spae. Then, the σ-algebra gener-ated by the topology of S is alled the algebra of Borel sets. Its elementsare alled Borel measurable.3.2 Measurable FuntionsAs we see the onept of a measurable spae is very similar to the onept ofa topologial spae. Both are based on a set of subsets losed under ertainoperations. We an push this analogy further and onsider the analog of aontinuous funtion: a measurable funtion.De�nition 3.13. Let S, T be measurable spaes. Then a map f : S →
T is alled measurable i� the preimage of every measurable set of T is ameasurable set of S. If either T or S or T and S are topologial spaesinstead we all f measurable i� it is measurable with respet to the generated
σ-algebra(s) of Borel sets.prop:ompmes Proposition 3.14. Let S, T, U be measurable spaes, f : S → T and g :
T → U measurable. Then, g ◦ f : S → U is measurable.Proof. Immediate.prop:mesrit Proposition 3.15. Let S be a measurable spae, T a topologial spae and
f : S → T . Then, f is measurable i� the preimage of every open set ismeasurable. Also, f is measurable i� the preimage of every losed set ismeasurable.Proof. Exerise.



4 Robert Oekl � RA NOTES � 03/04/2009or:ontmes Corollary 3.16. Let S and T be topologial spaes and f : S → T a ontin-uous map. Then, f is measurable.Proposition 3.17. Let S be a measurable spae, T and U topologial spaes,
f : S → T × U . Denote by fT : S → T and fU : S → U the omponentfuntions. If the produt f : S → T × U is measurable, then both fT and fUare measurable. Conversely, if T and U are seond-ountable and fT and fUare measurable, then f is measurable.Proof. First suppose that f is measurable. Then, fT = pT ◦ f , where pTis the projetion T × U → T . Sine pT is ontinuous, it is measurable byCorollary or:ontmes3.16 and the omposition fT is measurable by Proposition prop:ompmes3.14.In the same way it follows that fU is measurable.Conversely, suppose now that fT and fU are measurable. If V ⊆ T and
W ⊆ U are open sets, then f−1

T (V ) and f−1
U (W ) are measurable in S andso is their intersetion f−1(V × W ) = f−1

T (V ) ∩ f−1
U (W ). Sine T and Uare seond-ountable, every open set in T ×U an be written as a ountableunion of produts of open sets in T and U [Exerise.Show this!℄. But thepreimage of suh a ountable union in S under f−1 an be written as aountable union of preimages. Sine these are measurable, their ountableunion is also measurable. It follows then from Proposition prop:mesrit3.15 that f ismeasurable.In the following K denotes either the �eld of real numbers R or the �eldof omplex numbers C.Proposition 3.18. Let S be a measurable spae, f, g : S → K measurableand λ ∈ K. Then:

• |f | : x 7→ |f(x)| is measurable.
• f + g : x 7→ f(x) + g(x) is measurable.
• λf : x 7→ λf(x) is measurable.
• fg : x 7→ f(x)g(x) is measurable.Proof. Exerise.This shows in partiular that measurable funtions with values in R or Cform an algebra. Another important property of the set of measurable mapsis its losedness under pointwise limits. This an be formulated for the moregeneral ase when the values are taken in a metri spae.thm:limitmes Theorem 3.19 (adapted from S. Lang). Let S be a measurable spae and

T a metri spae. Suppose {fn}n∈N is a sequene of measurable funtions
fn : S → T whih onverges pointwise to the funtion f : S → T . Then, fis measurable.



Robert Oekl � RA NOTES � 03/04/2009 5Proof. Let U be an open set in T . Suppose x ∈ f−1(U). Sine {fn(x)}n∈Nonverges to f(x) there exists m ∈ N suh that x ∈ f−1
n (U) for all n > m. Inpartiular, x ∈

⋃

∞

n=k f−1
n (U) for any k ∈ N and so also x ∈

⋂

∞

k=1

⋃

∞

n=k f−1
n (U).Sine this is true for any x ∈ f−1(U) we get

f−1(U) ⊆
∞
⋂

k=1

∞
⋃

n=k

f−1
n (U).Consider now for all l ∈ N the open sets

Ul := {x ∈ U : d(x, y) > 1/l ∀y /∈ U}.Then, U =
⋃

∞

l=1 Ul and applying the above reasoning to eah Ul we get,
f−1(U) ⊆

∞
⋃

l=1

∞
⋂

k=1

∞
⋃

n=k

f−1
n (Ul).Suppose now that x /∈ f−1(U) and �x l ∈ N. Sine B1/l(f(x)) ∩ Ul = ∅there exists m ∈ N suh that x /∈ f−1

n (Ul) for all n > m. In parti-ular, x /∈
⋂

∞

k=1

⋃

∞

n=k f−1
n (Ul). Sine this is true for any l ∈ N we get

x /∈
⋃

∞

l=1

⋂

∞

k=1

⋃

∞

n=k f−1
n (Ul). Sine this is true for any x /∈ f−1(U) weget, ombining with the above result,
f−1(U) =

∞
⋃

l=1

∞
⋂

k=1

∞
⋃

n=k

f−1
n (Ul).Sine fn is measurable for all n ∈ N the right hand side is measurable. Wehave thus shown that preimages of open sets are measurable. By Proposi-tion prop:mesrit3.15 this is su�ient for f to be measurable.De�nition 3.20. Let S be a measurable spae. A map f : S → K is alleda simple map i� it is measurable and takes only �nitely many values.Proposition 3.21. Let S be a measurable spae and f : S → K a map thattakes only �nitely many values. Then f is a simple map (i.e., is measurable)i� the preimage of eah of the values of f is measurable.Proof. Exerise.Proposition 3.22. The simple funtions with values in K form a subalgebraof the algebra of measurable funtions with values in K.Proof. Exerise.Theorem 3.23 (adapted from S. Lang). Let S be a measurable spae and

f : S → K measurable. Then, f is the pointwise limit of a sequene of simplemaps. If, moreover, f takes values in R+
0 , then the sequene an be hosento inrease monotonially.



6 Robert Oekl � RA NOTES � 03/04/2009Proof. Consider �rst the ase K = R. Fix n ∈ N. For eah k ∈ {1, . . . , 2n+1n}de�ne the interval Ik := [−n + k−1
2n

,−n + k
2n

). Also, de�ne I0 := (−∞,−n)and I2n+1n+1 := [n,∞). Notie that R is the disjoint union of the measur-able intervals Ik for k ∈ {0, . . . , 2n+1n + 1}. Now set Xk := f−1(Ik) forall k ∈ {0, . . . , 2n+1n + 1}. Sine the intervals Ik are measurable so are thesets Xk. De�ne the funtion fn : X → R by fn(Xk) := −n + k−1
2n

for all
k ∈ {1, . . . , 2n+1n+1} and fn(X0) := −n. It is easy to see that {fn}n∈N is asequene of simple funtions that onverge pointwise to f . [Exerise.Showthis!℄ Moreover, if f takes values in R+

0 only, the sequene is monotoniallyinreasing. [Exerise.Show this!℄ To treat the ase K = C we deompose finto its real and imaginary part. The sum of simple sequenes for eah partis again a simple sequene.3.3 Positive MeasuresDe�nition 3.24. Let {an}n∈N be a monotonously inreasing sequene ofreal numbers. Then we say that limn→∞ an = ∞ i� for any a ∈ R thereexists m ∈ N suh that an > a for all n > m.De�nition 3.25 (Positive Measure). Let S be a set with an algebra M ofsubsets. Then, a map µ : M → [0,∞] is alled a (positive) measure i� it isoutably additive, i.e., satis�es the following properties:
• µ(∅) = 0.
• Let {Un}n∈N be a sequene of elements of M suh that Un ∩ Um = ∅if n 6= m and suh that ⋃n∈N Un ∈ M. Then,

µ

(

⋃

n∈N

Un

)

=
∑

n∈N

µ (Un) .If U ∈ M, then µ(U) is alled its measure. Moreover, a measurable spae Swith σ-algebra M and positive measure µ : M → [0,∞] is alled a measurespae.We shall mostly be interested in the ase whereM atually is a σ-algebra.However, it is will turn out onvenient to keep the de�nition more generalwhen we onsider onstruting measures.prop:pmes Proposition 3.26. Let S be a set, M an algebra of subsets of S and µ :
M → [0,∞] a measure. Then, the following properties hold:

• Let A,B ∈ M and A ⊆ B. Then, µ(A) ≤ µ(B).
• Let {An}n∈N be a sequene of elements of M suh that ⋃n∈N An ∈ M.Then,

µ

(

⋃

n∈N

An

)

≤
∑

n∈N

µ(An).
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• Let {An}n∈N be a sequene of elements of M suh that An ⊆ An+1 forall n ∈ N and ⋃n∈N An ∈ M. Then,

µ

(

⋃

n∈N

An

)

= lim
n→∞

µ(An).

• Let {An}n∈N be a sequene of elements of M suh that An ⊇ An+1 forall n ∈ N and ⋂n∈N An ∈ M. If furthermore, µ(An) < ∞ for some
n ∈ N then,

µ

(

⋂

n∈N

An

)

= lim
n→∞

µ(An).Proof. Exerise.Exerise 8. Chek whether the following examples are measures.
• Let S be a set and onsider the σ-algebra of all subsets of S. If A ⊆ Sis �nite de�ne µ(A) to be its number of elements. If A ⊆ S is in�nitede�ne µ(A) = ∞. µ is alled the ounting measure.
• Let S be a set and onsider the σ-algebra of all subsets of S. If A ⊆ Sis �nite de�ne µ(A) = 0. If A ⊆ S is in�nite de�ne µ(A) = ∞.
• Let S be a set and onsider the σ-algebra of all subsets of S. If A ⊆ S isountable de�ne µ(A) = 0. If A ⊆ S is not ountable de�ne µ(A) = ∞.
• Let S be a set and onsider the σ-algebra of all subsets of S. Let x ∈ S.For A ⊆ S de�ne µ(A) = 1 if x ∈ A and µ(A) = 0 otherwise. µ isalled the Dira measure with respet to x.De�nition 3.27. Let S be a measure spae and A ⊆ S a measurable subset.We say that A is σ-�nite if it is equal to some ountable union of measurablesets with �nite measure.Exerise 9. Whih of the examples of measures above are σ-�nite?De�nition 3.28. Let S be a measure spae with measure µ. If every subsetof any set of measure 0 is measurable, then we all S a omplete measure.Exerise 10. Show that the ompletion of a measure may be aomplishedvia enlarging the σ-algebra of measurable sets. Show that this is a wellde�ned onept (i.e., always exists and is uniquely determined). [Hint: Showthat the σ-algebra of the ompletion is given by sets of the form A∪N , where

A is measurable and N is a subset of a set of measure 0.℄



8 Robert Oekl � RA NOTES � 03/04/20093.4 Extension of MeasuresWe now turn to the question of how to onstrut measures. We will foushere on the method of extension. That is, we onsider a measure that ismerely de�ned on an algebra of subsets and extend it to a measure on a
σ-algebra.De�nition 3.29. Let S be a set and M a σ-algebra of subsets of S. Then,a map λ : M → [0,∞] is alled an outer measure on M i� it satis�es thefollowing properties:

• λ(∅) = 0.
• Let A,B ∈ M and A ⊆ B. Then, λ(A) ≤ λ(B). (monotoniity)
• Let {An}n∈N be a sequene of elements of M suh that ⋃n∈N An ∈ M.Then,

λ

(

⋃

n∈N

An

)

≤
∑

n∈N

λ (An) . (ountable subadditivity)Lemma 3.30. Let S be a set, N an algebra of subsets of S and µ a measureon N . On the σ-algebra P(S) of all subsets of S de�ne the funtion λ :
P(S) → [0,∞] given by

λ(X) = inf

{

∑

n∈N

µ(An) : An ∈ N ∀n ∈ N andX ⊆
⋃

n∈N

An

}

.Then, λ is an outer measure on P(S). Moreover, it extends µ, i.e., λ(A) =
µ(A) for all A ∈ N .Proof. Exerise.De�nition 3.31. Let S be a set and λ an outer measure on the σ-algebra
P(S) of all subsets of S. Then, A ⊆ S is alled λ-measurable i� λ(X) =
λ(X ∩ A) + λ(X ∩ ¬A) for all X ⊆ S.Lemma 3.32. Let S be a set and λ an outer measure on the σ-algebra P(S)of all subsets of S. Let M be the set of subsets of S that are λ-measurable.Then, M is a σ-algebra and λ is a omplete measure on M.Proof. Exerise.thm:hahn Theorem 3.33 (Hahn). Let S be a set, N an algebra of subsets of S and µa measure on N . Then, µ an be extended to a σ-algebra M ontaining Nsuh that µ is a omplete measure on M and for all X ∈ M we have

µ(X) = inf

{

∑

n∈N

µ(An) : An ∈ N ∀n ∈ N andX ⊆
⋃

n∈N

An

}

.



Robert Oekl � RA NOTES � 03/04/2009 9Proof. Exerise.prop:unex Proposition 3.34 (Uniqueness of Extension). Let S be a measurable spaewith σ-algebra M and measures µ1, µ2. Suppose there is an algebra N ⊆
M generating M and suh that µ(A) := µ1(A) = µ2(A) for all A ∈ N .Furthermore, assume that µ is σ-�nite with respet to N . Then, µ1 = µ2also on M.Proof. Let {Xn}n∈N be a sequene of elements of N suh that S =

⋃

n∈N Xkand Xn ⊆ Xn+1 and µ(Xn) < ∞ for all n ∈ N. (By σ-�niteness, there isa sequene {Yk}k∈N with S =
⋃

k∈N Yk and µ(Yk) < ∞ for all k ∈ N. Nowset Xn :=
⋃n

k=1 Yk.) De�ne the �nite measures µ1,n(A) := µ1(A ∩ Xn) and
µ2,n(A) := µ2(A ∩ Xn) on M for all n ∈ N. Now, let Bn be the subsets of
M where µ1,n and µ2,n agree. By onstrution, N ⊆ Bn for all n ∈ N. Weshow that the Bn are monotone.Fix n ∈ N. Let {Ak}k∈N be a sequene of elements of Bn suh that Ak ⊆
Ak+1 for all k ∈ N and set A :=

⋃

k∈N Ak. Then, using Proposition prop:pmes3.26,
µ1,n(A) = lim

k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).So, A ∈ Bn. Now, let {Ak}k∈N be a sequene of elements of Bn suh that
Ak ⊇ Ak+1 for all k ∈ N and set A :=

⋂

k∈N Ak. Again using Proposition prop:pmes3.26we get (note that the �niteness of the measure is essential here),
µ1,n(A) = lim

k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).So, A ∈ Bn. Hene, cBn is monotone and by Proposition prop:mt3.9 we must have
M ⊆ Bn and hene M = Bn.Thus, µ1,n = µ2,n for all n ∈ N. But then, µ1 =

∑

n∈N µ1,n =
∑

n∈N µ2,n =
µ2. This ompletes the proof.3.5 The Lebesgue MeasureIn the following we are going to onstrut the Lebesgue measure. This is theunique (as we shall see) measure on the real numbers assigning to an intervalits length. The onstrution proeeds in various stages.lem:intalg Lemma 3.35. The �nite unions of intervals of the type [a, b), (−∞, a), and
[a,∞) form an algebra N of subsets of the real numbers.Proof. Exerise.lem:intfa Lemma 3.36. The presription µ([a, b)) = b − a determines uniquely a�nitely additive funtion N → [0,∞] on the algebra N onsidered above.Proof. Exerise.



10 Robert Oekl � RA NOTES � 03/04/2009lem:intmes Lemma 3.37. The funtion µ : N → [0,∞] de�ned above is ountably ad-ditive and thus a measure.Proof. Let {An}n∈N be a sequene of pairwise disjoint elements of N suhthat A :=
⋃

n∈N ∈ N . We wish to show that
µ(A) =

∑

n∈N

µ(An).By �nite additivity we have µ(A) ≥ µ(
⋃m

n=1 An) =
∑m

n=1 µ(An) for all
m ∈ N and hene

µ(A) ≥
∑

n∈N

µ(An).It remains to show the opposite inequality.Assume at �rst that A is a �nite interval [a, b). Then, A is the disjointunion of a sequene of intervals {Ik}k∈N with Ik = [ak, bk) in suh a waythat eah An is the �nite union of some Ik. (We also allow the degeneratease ak = bk in whih ase Ik = ∅.) Fix now ǫ > 0 (with ǫ < b − a) andde�ne I ′k := (ak − 2−(k+2)ǫ, bk + 2−(k+2)ǫ) for all k ∈ N. Then, the opensets {I ′k}k∈N over the ompat interval [a, b − ǫ/2]. Thus, there is a �niteset of indies I ⊂ N suh that [a, b − ǫ/2] ⊂
⋃

k∈I I ′k. Then learly also
[a, b − ǫ/2) ⊂

⋃

k∈I I ′′k , where I ′′k := [ak − 2−(k+2)ǫ, bk + 2−(k+2)ǫ). By �niteadditivity of µ we get
µ([a, b − ǫ/2)) ≤ µ

(

⋃

k∈I

I ′′k

)

≤
∑

k∈I

µ
(

I ′′k
)

=
∑

k∈I

(

µ(Ik) + ǫ2−(k+1)
)

≤ ǫ/2 +
∑

k∈I

µ(Ik).But sine µ(A) = µ([a, b−ǫ/2))+ǫ/2, we �nd µ(A) ≤ ǫ+
∑

k∈I µ(Ik). Thus,there exists m ∈ N suh that µ(A) ≤ ǫ +
∑m

n=1 µ(An). But sine ǫ wasarbitrary we an onlude µ(A) ≤
∑

n∈N µ(An) and hene equality.Exerise.Complete the proof.Proposition 3.38. Consider the real numbers with its σ-algebra B of Borelsets. Then, the presription µ([a, b)) := b − a uniquely extends to a measure
µ : B → [0,∞].Proof. By Lemmas lem:intalg3.35, lem:intfa3.36 and lem:intmes3.37 the presription uniquely de�nesa measure µ on the algebra N of unions of intervals of the type [a, b),
(−∞, a), and [a,∞). By Theorem thm:hahn3.33 µ extends to a σ-algebra M on-taining N . But the σ-algebra generated by N is the σ-algebra B of Borelsets. (Exerise.Show this!) So, in partiular, we get a measure on B. ByProposition prop:unex3.34 this is unique sine µ is σ-�nite on N . (Exerise.Showthis latter statement!)



Robert Oekl � RA NOTES � 03/04/2009 11De�nition 3.39. The measure de�ned in the preeeding Proposition isalled the Lebesgue measure on R.Exerise 11. Consider the real numbers with the Lebesgue measure. De-termine µ(Q) and µ(R \ Q).Exerise 12. The Cantor set C is a subset of the interval [0, 1]. It an bedesribed for example as
C =

∞
⋂

n=0

(3n
−1)/2
⋃

k=0

[

2k

3n
,
2k + 1

3n

]

.Show that µ(C) = 0.Proposition 3.40. The Lebesgue measure is translation invariant, i.e., µ(A+
c) = µ(A) for any measurable A and c ∈ R.Proof. Straightforward.Exerise 13. Consider the following equivalene relation on R: Let x ∼ yi� x−y ∈ Q. Now hoose (using the axiom of hoie) one representative outof eah equivalene lass, suh that this representative lies in [0, 1]. Call theset obtained in this way A.1. Show that (A+r)∩(A+s) = ∅ if r and s are distint rational numbers.Supposing that A is Lebesgue measurable, onlude that µ(A) = 0.2. Show that R =

⋃

q∈Q(A+q). Supposing that A is Lebesgue measurable,onlude that µ(A) > 0.We obtain a ontradition showing that A is not Lebesgue measurable.We an de�ne the Lebesgue measure more generally for Rn. The intervalsof the type [a, b) are replaed by produts of suh intervals. Otherwise theonstrution proeeds in parallel.Proposition 3.41. Consider Rn with its σ-algebra B of Borel sets. Then,the presription µ([a1, b1) × · · · × [an, bn)) = (b1 − 11) · · · (bn − an) uniquelyextends to a measure µ : B → [0,∞].Exerise 14. Sketh the proof by explaining the hanges with respet tothe one-dimensional ase.


