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kl � RA NOTES � 03/04/2009 1Notes for the 
ourse REAL ANALYSIS3 MeasuresThe basi
 idea behind integration theory via measures may be roughly de-s
ribed as follows: Given a spa
e (set) we want to asso
iate "sizes" to"pie
es" of the spa
e. To do this we �rst have to make pre
ise what wemean by a "pie
e", i.e., what subsets we admit as "pie
es". This is thepurpose of the 
on
ept of a σ-algebra and a measurable spa
e. Given thatwe know what a pie
e is, we want to assign a number to it, its "size", insu
h a way that sizes add up appropriately when we join pie
es. This is pro-vided by the 
on
ept of a measure. Then, we 
an de
lare the integral for the
hara
terisit
 fun
tion on a pie
e to be the size of the pie
e. Approximatingmore arbitrary fun
tions by linear 
ombinations of 
hara
teristi
 fun
tionsfor pie
es then yields a general notion of integral.3.1 σ-Algebras and Measurable Spa
esDe�nition 3.1 (Boolean Algebra). Let A be a set equipped with threeoperations: ∧ : A × A → A, ∨ : A × A → A and ¬ : A → A and two spe
ialelements 0, 1 ∈ A. Suppose these satisfy the following properties:
• (x ∧ y) ∧ z = x ∧ (y ∧ z) and (x ∨ y) ∨ z = x ∨ (y ∨ z) ∀x, y, z ∈ A.(asso
iativity)
• x ∧ y = y ∧ x and x ∨ y = y ∨ x ∀x, y ∈ A. (
ommutativity)
• x∧(y∨z) = (x∧y)∨(x∧z) and x∨(y∧z) = (x∨y)∧(x∨z) ∀x, y, z ∈ A.(distributivity)
• x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x ∀x, y ∈ A. (absorption)
• x ∧ ¬x = 0 and x ∨ ¬x = 1 ∀x ∈ A. (
omplement)Then, A is 
alled a Boolean algebra.Proposition 3.2. Let A be a Boolean algebra. Then, the following propertieshold:

x ∧ x = x, x ∨ x = x, x ∧ 0 = 0, x ∧ 1 = x, x ∨ 0 = x, x ∨ 1 = 1 ∀x ∈ A.Proof. Exer
ise.Exer
ise 3. Show that the set with two elements 0, 1 forms a Booleanalgebra. This is important in logi
, where 0 stands for "false" and 1 for"true".
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kl � RA NOTES � 03/04/2009Exer
ise 4. Let S be a set. Show that the set P(S) of subsets of S formsa Boolean algebra, where ∨ = ∪ is the union, ∧ = ∩ is the interse
tion and
¬ is the 
omplement of sets.De�nition 3.3 (Algebra of sets). Let S be a set. A subset M of the set
P(S) of subsets of S is 
alled an algebra of sets i� it is a Boolean subalgebraof P(S).Proposition 3.4. Let S be a set and M a subset of the set P(S) of subsetsof S. Then M is an algebra of sets i� it 
ontains the empty set and is 
losedunder 
omplements, �nite unions, and �nite interse
tions.Proof. Immediate.Exer
ise 5. Show that the above proposition remains true if we erase eitherthe requirement for 
losedness under �nite unions or the requirement for
losedness under �nite interse
tions.De�nition 3.5. Let S be a set and M an algebra of subsets of S. We 
all
M a σ-algebra of sets i� it is 
losed under 
ountable unions and 
ountableinterse
tions.Exer
ise 6. Show that the above de�nition remains un
hanged if we removeeither the requirement for 
losedness under 
ountable unions or 
losednessunder 
ountable interse
tions.De�nition 3.6. Let S be a set and B a subset of the set P(S) of subsets of
S. Then, the smallest σ-algebra M on S 
ontaining B is 
alled the σ-algebragenerated by B.Exer
ise 7. Justify the above de�nition by showing that the smallest σ-algebra in the sense of the de�nition always exists.De�nition 3.7. Let S be a set and B a subset of P(S). Then, B is 
alledmonotone i� it satis�es the following properties:

• Let {An}n∈N be a sequen
e of elements of B su
h that An ⊆ An+1.Then, ⋃n∈N An ∈ B.
• Let {An}n∈N be a sequen
e of elements of B su
h that An ⊇ An+1.Then, ⋂n∈N An ∈ B.prop:samon Proposition 3.8. 1. A σ-algebra is monotone. 2. An algebra that is mono-tone is a σ-algebra.Proof. Exer
ise.prop:m
t Proposition 3.9 (Monotone Class Theorem). Let S be a set and N an al-gebra of subsets of S. Then, the smallest setM of subsets of S whi
h 
ontains

N and is monotone is the σ-algebra generated by N .
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h A ∈ M and 
onsider
MA := {B ∈ M : A ∩ B ∈ M, A ∩ ¬B ∈ M,¬A ∩ B ∈ M}.It is easy to see that MA is monotone. [Exer
ise.Show this!℄ Furthermore,if A ∈ N , then N ⊆ MA sin
e N is an algebra. So in this 
ase M ⊆ MAmy minimality of M and 
onsequently M = MA. Thus, for B ∈ M we have

B ∈ MA and hen
e A ∈ MB if A ∈ N . So, N ⊆ MB and by minimality we
on
lude M = MB for any B ∈ M. But this means that M is an algebra.Thus, by Proposition prop:samon3.8.2, M is a σ-algebra. Furthermore, by minimalityand Proposition prop:samon3.8.1, it is the σ-algebra generated by N .De�nition 3.10. Let S be a set and M a σ-algebra of subsets of S. Then,we 
all the pair (S,M) ameasurable spa
e and the elements ofMmeasurablesets.De�nition 3.11. Let S be a measurable spa
e and U a subset of S. Then,the σ-algebra on S interse
ted with U is 
alled the indu
ed σ-algebra on U .De�nition 3.12. Let S be a topologi
al spa
e. Then, the σ-algebra gener-ated by the topology of S is 
alled the algebra of Borel sets. Its elementsare 
alled Borel measurable.3.2 Measurable Fun
tionsAs we see the 
on
ept of a measurable spa
e is very similar to the 
on
ept ofa topologi
al spa
e. Both are based on a set of subsets 
losed under 
ertainoperations. We 
an push this analogy further and 
onsider the analog of a
ontinuous fun
tion: a measurable fun
tion.De�nition 3.13. Let S, T be measurable spa
es. Then a map f : S →
T is 
alled measurable i� the preimage of every measurable set of T is ameasurable set of S. If either T or S or T and S are topologi
al spa
esinstead we 
all f measurable i� it is measurable with respe
t to the generated
σ-algebra(s) of Borel sets.prop:
ompmes Proposition 3.14. Let S, T, U be measurable spa
es, f : S → T and g :
T → U measurable. Then, g ◦ f : S → U is measurable.Proof. Immediate.prop:mes
rit Proposition 3.15. Let S be a measurable spa
e, T a topologi
al spa
e and
f : S → T . Then, f is measurable i� the preimage of every open set ismeasurable. Also, f is measurable i� the preimage of every 
losed set ismeasurable.Proof. Exer
ise.
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or:
ontmes Corollary 3.16. Let S and T be topologi
al spa
es and f : S → T a 
ontin-uous map. Then, f is measurable.Proposition 3.17. Let S be a measurable spa
e, T and U topologi
al spa
es,
f : S → T × U . Denote by fT : S → T and fU : S → U the 
omponentfun
tions. If the produ
t f : S → T × U is measurable, then both fT and fUare measurable. Conversely, if T and U are se
ond-
ountable and fT and fUare measurable, then f is measurable.Proof. First suppose that f is measurable. Then, fT = pT ◦ f , where pTis the proje
tion T × U → T . Sin
e pT is 
ontinuous, it is measurable byCorollary 
or:
ontmes3.16 and the 
omposition fT is measurable by Proposition prop:
ompmes3.14.In the same way it follows that fU is measurable.Conversely, suppose now that fT and fU are measurable. If V ⊆ T and
W ⊆ U are open sets, then f−1

T (V ) and f−1
U (W ) are measurable in S andso is their interse
tion f−1(V × W ) = f−1

T (V ) ∩ f−1
U (W ). Sin
e T and Uare se
ond-
ountable, every open set in T ×U 
an be written as a 
ountableunion of produ
ts of open sets in T and U [Exer
ise.Show this!℄. But thepreimage of su
h a 
ountable union in S under f−1 
an be written as a
ountable union of preimages. Sin
e these are measurable, their 
ountableunion is also measurable. It follows then from Proposition prop:mes
rit3.15 that f ismeasurable.In the following K denotes either the �eld of real numbers R or the �eldof 
omplex numbers C.Proposition 3.18. Let S be a measurable spa
e, f, g : S → K measurableand λ ∈ K. Then:

• |f | : x 7→ |f(x)| is measurable.
• f + g : x 7→ f(x) + g(x) is measurable.
• λf : x 7→ λf(x) is measurable.
• fg : x 7→ f(x)g(x) is measurable.Proof. Exer
ise.This shows in parti
ular that measurable fun
tions with values in R or Cform an algebra. Another important property of the set of measurable mapsis its 
losedness under pointwise limits. This 
an be formulated for the moregeneral 
ase when the values are taken in a metri
 spa
e.thm:limitmes Theorem 3.19 (adapted from S. Lang). Let S be a measurable spa
e and

T a metri
 spa
e. Suppose {fn}n∈N is a sequen
e of measurable fun
tions
fn : S → T whi
h 
onverges pointwise to the fun
tion f : S → T . Then, fis measurable.
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kl � RA NOTES � 03/04/2009 5Proof. Let U be an open set in T . Suppose x ∈ f−1(U). Sin
e {fn(x)}n∈N
onverges to f(x) there exists m ∈ N su
h that x ∈ f−1
n (U) for all n > m. Inparti
ular, x ∈

⋃

∞

n=k f−1
n (U) for any k ∈ N and so also x ∈

⋂

∞

k=1

⋃

∞

n=k f−1
n (U).Sin
e this is true for any x ∈ f−1(U) we get

f−1(U) ⊆
∞
⋂

k=1

∞
⋃

n=k

f−1
n (U).Consider now for all l ∈ N the open sets

Ul := {x ∈ U : d(x, y) > 1/l ∀y /∈ U}.Then, U =
⋃

∞

l=1 Ul and applying the above reasoning to ea
h Ul we get,
f−1(U) ⊆

∞
⋃

l=1

∞
⋂

k=1

∞
⋃

n=k

f−1
n (Ul).Suppose now that x /∈ f−1(U) and �x l ∈ N. Sin
e B1/l(f(x)) ∩ Ul = ∅there exists m ∈ N su
h that x /∈ f−1

n (Ul) for all n > m. In parti
-ular, x /∈
⋂

∞

k=1

⋃

∞

n=k f−1
n (Ul). Sin
e this is true for any l ∈ N we get

x /∈
⋃

∞

l=1

⋂

∞

k=1

⋃

∞

n=k f−1
n (Ul). Sin
e this is true for any x /∈ f−1(U) weget, 
ombining with the above result,
f−1(U) =

∞
⋃

l=1

∞
⋂

k=1

∞
⋃

n=k

f−1
n (Ul).Sin
e fn is measurable for all n ∈ N the right hand side is measurable. Wehave thus shown that preimages of open sets are measurable. By Proposi-tion prop:mes
rit3.15 this is su�
ient for f to be measurable.De�nition 3.20. Let S be a measurable spa
e. A map f : S → K is 
alleda simple map i� it is measurable and takes only �nitely many values.Proposition 3.21. Let S be a measurable spa
e and f : S → K a map thattakes only �nitely many values. Then f is a simple map (i.e., is measurable)i� the preimage of ea
h of the values of f is measurable.Proof. Exer
ise.Proposition 3.22. The simple funtions with values in K form a subalgebraof the algebra of measurable fun
tions with values in K.Proof. Exer
ise.Theorem 3.23 (adapted from S. Lang). Let S be a measurable spa
e and

f : S → K measurable. Then, f is the pointwise limit of a sequen
e of simplemaps. If, moreover, f takes values in R+
0 , then the sequen
e 
an be 
hosento in
rease monotoni
ally.
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kl � RA NOTES � 03/04/2009Proof. Consider �rst the 
ase K = R. Fix n ∈ N. For ea
h k ∈ {1, . . . , 2n+1n}de�ne the interval Ik := [−n + k−1
2n

,−n + k
2n

). Also, de�ne I0 := (−∞,−n)and I2n+1n+1 := [n,∞). Noti
e that R is the disjoint union of the measur-able intervals Ik for k ∈ {0, . . . , 2n+1n + 1}. Now set Xk := f−1(Ik) forall k ∈ {0, . . . , 2n+1n + 1}. Sin
e the intervals Ik are measurable so are thesets Xk. De�ne the fun
tion fn : X → R by fn(Xk) := −n + k−1
2n

for all
k ∈ {1, . . . , 2n+1n+1} and fn(X0) := −n. It is easy to see that {fn}n∈N is asequen
e of simple fun
tions that 
onverge pointwise to f . [Exer
ise.Showthis!℄ Moreover, if f takes values in R+

0 only, the sequen
e is monotoni
allyin
reasing. [Exer
ise.Show this!℄ To treat the 
ase K = C we de
ompose finto its real and imaginary part. The sum of simple sequen
es for ea
h partis again a simple sequen
e.3.3 Positive MeasuresDe�nition 3.24. Let {an}n∈N be a monotonously in
reasing sequen
e ofreal numbers. Then we say that limn→∞ an = ∞ i� for any a ∈ R thereexists m ∈ N su
h that an > a for all n > m.De�nition 3.25 (Positive Measure). Let S be a set with an algebra M ofsubsets. Then, a map µ : M → [0,∞] is 
alled a (positive) measure i� it is
outably additive, i.e., satis�es the following properties:
• µ(∅) = 0.
• Let {Un}n∈N be a sequen
e of elements of M su
h that Un ∩ Um = ∅if n 6= m and su
h that ⋃n∈N Un ∈ M. Then,

µ

(

⋃

n∈N

Un

)

=
∑

n∈N

µ (Un) .If U ∈ M, then µ(U) is 
alled its measure. Moreover, a measurable spa
e Swith σ-algebra M and positive measure µ : M → [0,∞] is 
alled a measurespa
e.We shall mostly be interested in the 
ase whereM a
tually is a σ-algebra.However, it is will turn out 
onvenient to keep the de�nition more generalwhen we 
onsider 
onstru
ting measures.prop:pmes Proposition 3.26. Let S be a set, M an algebra of subsets of S and µ :
M → [0,∞] a measure. Then, the following properties hold:

• Let A,B ∈ M and A ⊆ B. Then, µ(A) ≤ µ(B).
• Let {An}n∈N be a sequen
e of elements of M su
h that ⋃n∈N An ∈ M.Then,

µ

(

⋃

n∈N

An

)

≤
∑

n∈N

µ(An).
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• Let {An}n∈N be a sequen
e of elements of M su
h that An ⊆ An+1 forall n ∈ N and ⋃n∈N An ∈ M. Then,

µ

(

⋃

n∈N

An

)

= lim
n→∞

µ(An).

• Let {An}n∈N be a sequen
e of elements of M su
h that An ⊇ An+1 forall n ∈ N and ⋂n∈N An ∈ M. If furthermore, µ(An) < ∞ for some
n ∈ N then,

µ

(

⋂

n∈N

An

)

= lim
n→∞

µ(An).Proof. Exer
ise.Exer
ise 8. Che
k whether the following examples are measures.
• Let S be a set and 
onsider the σ-algebra of all subsets of S. If A ⊆ Sis �nite de�ne µ(A) to be its number of elements. If A ⊆ S is in�nitede�ne µ(A) = ∞. µ is 
alled the 
ounting measure.
• Let S be a set and 
onsider the σ-algebra of all subsets of S. If A ⊆ Sis �nite de�ne µ(A) = 0. If A ⊆ S is in�nite de�ne µ(A) = ∞.
• Let S be a set and 
onsider the σ-algebra of all subsets of S. If A ⊆ S is
ountable de�ne µ(A) = 0. If A ⊆ S is not 
ountable de�ne µ(A) = ∞.
• Let S be a set and 
onsider the σ-algebra of all subsets of S. Let x ∈ S.For A ⊆ S de�ne µ(A) = 1 if x ∈ A and µ(A) = 0 otherwise. µ is
alled the Dira
 measure with respe
t to x.De�nition 3.27. Let S be a measure spa
e and A ⊆ S a measurable subset.We say that A is σ-�nite if it is equal to some 
ountable union of measurablesets with �nite measure.Exer
ise 9. Whi
h of the examples of measures above are σ-�nite?De�nition 3.28. Let S be a measure spa
e with measure µ. If every subsetof any set of measure 0 is measurable, then we 
all S a 
omplete measure.Exer
ise 10. Show that the 
ompletion of a measure may be a

omplishedvia enlarging the σ-algebra of measurable sets. Show that this is a wellde�ned 
on
ept (i.e., always exists and is uniquely determined). [Hint: Showthat the σ-algebra of the 
ompletion is given by sets of the form A∪N , where

A is measurable and N is a subset of a set of measure 0.℄
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kl � RA NOTES � 03/04/20093.4 Extension of MeasuresWe now turn to the question of how to 
onstru
t measures. We will fo
ushere on the method of extension. That is, we 
onsider a measure that ismerely de�ned on an algebra of subsets and extend it to a measure on a
σ-algebra.De�nition 3.29. Let S be a set and M a σ-algebra of subsets of S. Then,a map λ : M → [0,∞] is 
alled an outer measure on M i� it satis�es thefollowing properties:

• λ(∅) = 0.
• Let A,B ∈ M and A ⊆ B. Then, λ(A) ≤ λ(B). (monotoni
ity)
• Let {An}n∈N be a sequen
e of elements of M su
h that ⋃n∈N An ∈ M.Then,

λ

(

⋃

n∈N

An

)

≤
∑

n∈N

λ (An) . (
ountable subadditivity)Lemma 3.30. Let S be a set, N an algebra of subsets of S and µ a measureon N . On the σ-algebra P(S) of all subsets of S de�ne the fun
tion λ :
P(S) → [0,∞] given by

λ(X) = inf

{

∑

n∈N

µ(An) : An ∈ N ∀n ∈ N andX ⊆
⋃

n∈N

An

}

.Then, λ is an outer measure on P(S). Moreover, it extends µ, i.e., λ(A) =
µ(A) for all A ∈ N .Proof. Exer
ise.De�nition 3.31. Let S be a set and λ an outer measure on the σ-algebra
P(S) of all subsets of S. Then, A ⊆ S is 
alled λ-measurable i� λ(X) =
λ(X ∩ A) + λ(X ∩ ¬A) for all X ⊆ S.Lemma 3.32. Let S be a set and λ an outer measure on the σ-algebra P(S)of all subsets of S. Let M be the set of subsets of S that are λ-measurable.Then, M is a σ-algebra and λ is a 
omplete measure on M.Proof. Exer
ise.thm:hahn Theorem 3.33 (Hahn). Let S be a set, N an algebra of subsets of S and µa measure on N . Then, µ 
an be extended to a σ-algebra M 
ontaining Nsu
h that µ is a 
omplete measure on M and for all X ∈ M we have

µ(X) = inf

{

∑

n∈N

µ(An) : An ∈ N ∀n ∈ N andX ⊆
⋃

n∈N

An

}

.
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ise.prop:unex Proposition 3.34 (Uniqueness of Extension). Let S be a measurable spa
ewith σ-algebra M and measures µ1, µ2. Suppose there is an algebra N ⊆
M generating M and su
h that µ(A) := µ1(A) = µ2(A) for all A ∈ N .Furthermore, assume that µ is σ-�nite with respe
t to N . Then, µ1 = µ2also on M.Proof. Let {Xn}n∈N be a sequen
e of elements of N su
h that S =

⋃

n∈N Xkand Xn ⊆ Xn+1 and µ(Xn) < ∞ for all n ∈ N. (By σ-�niteness, there isa sequen
e {Yk}k∈N with S =
⋃

k∈N Yk and µ(Yk) < ∞ for all k ∈ N. Nowset Xn :=
⋃n

k=1 Yk.) De�ne the �nite measures µ1,n(A) := µ1(A ∩ Xn) and
µ2,n(A) := µ2(A ∩ Xn) on M for all n ∈ N. Now, let Bn be the subsets of
M where µ1,n and µ2,n agree. By 
onstru
tion, N ⊆ Bn for all n ∈ N. Weshow that the Bn are monotone.Fix n ∈ N. Let {Ak}k∈N be a sequen
e of elements of Bn su
h that Ak ⊆
Ak+1 for all k ∈ N and set A :=

⋃

k∈N Ak. Then, using Proposition prop:pmes3.26,
µ1,n(A) = lim

k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).So, A ∈ Bn. Now, let {Ak}k∈N be a sequen
e of elements of Bn su
h that
Ak ⊇ Ak+1 for all k ∈ N and set A :=

⋂

k∈N Ak. Again using Proposition prop:pmes3.26we get (note that the �niteness of the measure is essential here),
µ1,n(A) = lim

k→∞

µ1,n(Ak) = lim
k→∞

µ2,n(Ak) = µ2,n(A).So, A ∈ Bn. Hen
e, cBn is monotone and by Proposition prop:m
t3.9 we must have
M ⊆ Bn and hen
e M = Bn.Thus, µ1,n = µ2,n for all n ∈ N. But then, µ1 =

∑

n∈N µ1,n =
∑

n∈N µ2,n =
µ2. This 
ompletes the proof.3.5 The Lebesgue MeasureIn the following we are going to 
onstru
t the Lebesgue measure. This is theunique (as we shall see) measure on the real numbers assigning to an intervalits length. The 
onstru
tion pro
eeds in various stages.lem:intalg Lemma 3.35. The �nite unions of intervals of the type [a, b), (−∞, a), and
[a,∞) form an algebra N of subsets of the real numbers.Proof. Exer
ise.lem:intfa Lemma 3.36. The pres
ription µ([a, b)) = b − a determines uniquely a�nitely additive fun
tion N → [0,∞] on the algebra N 
onsidered above.Proof. Exer
ise.
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kl � RA NOTES � 03/04/2009lem:intmes Lemma 3.37. The fun
tion µ : N → [0,∞] de�ned above is 
ountably ad-ditive and thus a measure.Proof. Let {An}n∈N be a sequen
e of pairwise disjoint elements of N su
hthat A :=
⋃

n∈N ∈ N . We wish to show that
µ(A) =

∑

n∈N

µ(An).By �nite additivity we have µ(A) ≥ µ(
⋃m

n=1 An) =
∑m

n=1 µ(An) for all
m ∈ N and hen
e

µ(A) ≥
∑

n∈N

µ(An).It remains to show the opposite inequality.Assume at �rst that A is a �nite interval [a, b). Then, A is the disjointunion of a sequen
e of intervals {Ik}k∈N with Ik = [ak, bk) in su
h a waythat ea
h An is the �nite union of some Ik. (We also allow the degenerate
ase ak = bk in whi
h 
ase Ik = ∅.) Fix now ǫ > 0 (with ǫ < b − a) andde�ne I ′k := (ak − 2−(k+2)ǫ, bk + 2−(k+2)ǫ) for all k ∈ N. Then, the opensets {I ′k}k∈N 
over the 
ompa
t interval [a, b − ǫ/2]. Thus, there is a �niteset of indi
es I ⊂ N su
h that [a, b − ǫ/2] ⊂
⋃

k∈I I ′k. Then 
learly also
[a, b − ǫ/2) ⊂

⋃

k∈I I ′′k , where I ′′k := [ak − 2−(k+2)ǫ, bk + 2−(k+2)ǫ). By �niteadditivity of µ we get
µ([a, b − ǫ/2)) ≤ µ

(

⋃

k∈I

I ′′k

)

≤
∑

k∈I

µ
(

I ′′k
)

=
∑

k∈I

(

µ(Ik) + ǫ2−(k+1)
)

≤ ǫ/2 +
∑

k∈I

µ(Ik).But sin
e µ(A) = µ([a, b−ǫ/2))+ǫ/2, we �nd µ(A) ≤ ǫ+
∑

k∈I µ(Ik). Thus,there exists m ∈ N su
h that µ(A) ≤ ǫ +
∑m

n=1 µ(An). But sin
e ǫ wasarbitrary we 
an 
on
lude µ(A) ≤
∑

n∈N µ(An) and hen
e equality.Exer
ise.Complete the proof.Proposition 3.38. Consider the real numbers with its σ-algebra B of Borelsets. Then, the pres
ription µ([a, b)) := b − a uniquely extends to a measure
µ : B → [0,∞].Proof. By Lemmas lem:intalg3.35, lem:intfa3.36 and lem:intmes3.37 the pres
ription uniquely de�nesa measure µ on the algebra N of unions of intervals of the type [a, b),
(−∞, a), and [a,∞). By Theorem thm:hahn3.33 µ extends to a σ-algebra M 
on-taining N . But the σ-algebra generated by N is the σ-algebra B of Borelsets. (Exer
ise.Show this!) So, in parti
ular, we get a measure on B. ByProposition prop:unex3.34 this is unique sin
e µ is σ-�nite on N . (Exer
ise.Showthis latter statement!)
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kl � RA NOTES � 03/04/2009 11De�nition 3.39. The measure de�ned in the pre
eeding Proposition is
alled the Lebesgue measure on R.Exer
ise 11. Consider the real numbers with the Lebesgue measure. De-termine µ(Q) and µ(R \ Q).Exer
ise 12. The Cantor set C is a subset of the interval [0, 1]. It 
an bedes
ribed for example as
C =

∞
⋂

n=0

(3n
−1)/2
⋃

k=0

[

2k

3n
,
2k + 1

3n

]

.Show that µ(C) = 0.Proposition 3.40. The Lebesgue measure is translation invariant, i.e., µ(A+
c) = µ(A) for any measurable A and c ∈ R.Proof. Straightforward.Exer
ise 13. Consider the following equivalen
e relation on R: Let x ∼ yi� x−y ∈ Q. Now 
hoose (using the axiom of 
hoi
e) one representative outof ea
h equivalen
e 
lass, su
h that this representative lies in [0, 1]. Call theset obtained in this way A.1. Show that (A+r)∩(A+s) = ∅ if r and s are distin
t rational numbers.Supposing that A is Lebesgue measurable, 
onlude that µ(A) = 0.2. Show that R =

⋃

q∈Q(A+q). Supposing that A is Lebesgue measurable,
onlude that µ(A) > 0.We obtain a 
ontradi
tion showing that A is not Lebesgue measurable.We 
an de�ne the Lebesgue measure more generally for Rn. The intervalsof the type [a, b) are repla
ed by produ
ts of su
h intervals. Otherwise the
onstru
tion pro
eeds in parallel.Proposition 3.41. Consider Rn with its σ-algebra B of Borel sets. Then,the pres
ription µ([a1, b1) × · · · × [an, bn)) = (b1 − 11) · · · (bn − an) uniquelyextends to a measure µ : B → [0,∞].Exer
ise 14. Sket
h the proof by explaining the 
hanges with respe
t tothe one-dimensional 
ase.


